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NONLINEAR WAVES ON THE SURFACE OF A FREELY FLOWING VERTICAL LIQUID FILM 

Yu. P. Krasny and V. V. Mikho UDC 532.529.6 

The nonlinear equation describing nonstationary waves on the surface of a freely 
flowing vertical liquid film has been investigated by a perturbation theory 
method. 

I. The wave flow regimes of thin films on a vertical wall were investigated both ex- 
perimentally [1-4] and theoretically [4-9] in many studies. Experiment shows that laminar 
flow of a liquid film is unstab]~, starting with very small Reynolds numbers. The instabil- 
ity leads to generation of periodic waves on the surface of the film, whose amplitude in- 
creases with propagation, and quickly departs from the stationary value. To determine the 
characteristics of stationary waves, various assumptions on the wave flow regime are usually 
used in theoretical studies. Thus, in the first problem investigated on wave flow of a 
vertical liquid film, Kapitza [6] assumed minimal viscous energy dissipation for the wave 
realized. An assumption was introduced [7] on "optimality" of the wave regime, i.e., minimal- 
ity (for a given liquid discharge) of the mean film thickness. It was assumed in [4] that 
only "maximum growth waves" are realized experimentally, for which the amplitude increment 
is maximum. A problem was subsequently solved [8], where it was taken into account that in 
the stationary regime the amplitude increment corresponding to the stationary value of the 
wave number vanishes. At the same time, for all other wave number values the increment must 
be negative. The use of various assumptions of this nature, such as in [4, 6, 7], often leads 
to good agreement with experiment, but is, in our opinion, somewhat artificial. It seems to 
us that the wave characteristics of established flows must be obtained naturally from the 
solution of the nonstationary nonlinear equation describing the wave formation. In the present 
paper an attempt was made to solve this problem, using the method of slowly varying parameters, 
developed in detail by Bogolyubov and Mitropol'skii [i0] for nonlinear system oscillations. 
This method was generalized in [11-16] so as to investigate nonlinear wave processes. 

In the region of large Reynols numbers, when Re(ho/~) >> I, the original equation for the 
film thickness h(x, t) (Fig. i) is 

at + 17Vo Oh + 2 . 3 v  ~ h - - h o  Oh c~ho 03h 3~_.__ Oh Oh 
-- ' . r o d  -77-+ 3 ,o (1) 

3 /--y~ 

~)o _ Q where h o ~ /  - - ~ - Q  �9 

The equation given was obtained in [4]. Its linearized variant is also contained in the 
monograph [9]. For further study of this equation (see [4]), in the right-hand side we re- 

ah ah ah 
placed the time derivative -- bv --c-- ~--l.7vo and carried out the integration. This 
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replacement is not uniformly valid, since the phase velocity c is constant only for short 
times, when the wave amplitude a is small, and the amplitude dependence of c can be neglected. 
With increasing a the waves become nonlinear, and c starts depending substantially on ampli- 
tude. It is important to turn attention to the fact that Eq. (1) is the Korteweg-de Vries 
equation with energy pumping, described by the right-hand side. Therefore, the wave evolu- 
tion and its departure from the stationary regime must be determined by the relation of the 

terms appearing in the right-hand side of Eq. (I). Even though the quantity h~vo ~ + 

3V 0-'0Tx ) dx is small in comparison with the other terms of the equation, the structure of 

this expression is particularly important for correct treatment. 

After transforming to the new unknown function w = 2.3(h- ho)/ho and introducing dimen- 
sionless variables and parameters 

t' = tv~ x' x o' a 3~ 3 (2) 
ho ho dv~ho Q Re 

Eq. (i) transforms to the form 

or' + 1.7 g- w - -  - -  ~ + 3 dx'. (3 )  
Ox' Ox' - -  o Ox,, Ox' 

2. Within our approximation Re(ho/%) >> i the right-hand side of Eq. (3), proportional 
to ~ = 3/Re, is small in comparison with each of the term on the left-hand side. Therefore, 
according to the method of slowly varying coefficients [i0] we will assume that the right- 
hand side of Eq. (3) is a small perturbation influencing its solutions. In the absence of 
perturbations, i.e., for ~ = 0, the solution of Eq. (3) would be the following (see [17, 18]): 

w0 (x',  t') = --p~ (z), (4) 

where 

r (z) : dn 2 (z, s) - -  E (s)/K (s); 

x' - -  ~1 (t') . c't'. , l ( t ' )  = 

(5) 

Here dn(z, s) is the Jacobi elliptic function with modulus s and period 2K(s), corresponding 
to the wavelength 

~" = %/ho= 2 ] / ' 1 2 o '  K (s), ( 6 )  
9 

C r = . 
c = I . 7 + p 2 [ E ( s )  2 - - s 2  ] ( 7 )  

vo L ~  3 J" 

The parameter s(O~ s ~ I) serves as a measure of the wave nonlinearity. For s << 1 the 
elliptic functions tend to the trigonometric functions, while for s § 1 the periodic wave 
transforms to a single peak. The parameter 0 is related to the wave amplitude. Indeed, if 
a denotes the difference between the maximum and minimum values of wo(x', t'), then according 
to the properties of the function dn(z, s) 

a = p2s~, 

The solution Wo(X', t') was selected by us so that 

~f Wo (X', t') dx' = O. 
0 

(8) 

(9) 
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Taking aii this into consideration, the general solution of Eq. (3) is sought in form of the 
following expansion (see [14-16]): 

r..0J (X ~', t t) = __~)2q) (Z) -]- g ~ l  (Z, ~')  ~ -  Pc.2[OJ 2 (Z, i t )  _]_ . . . , (io) 

in which w1(z, t'), w2(z, t') ,etc. are periodic functions in the variable z with period 
2K(s), and for the stationary regime 

2K(s) 2K(s) 
~ (z, ~') dz = ~ ~ ,  (z, c )dz  . . . . .  o. 

0 0 

(il) 

The quantities 0 and n are functions of time, and are determined by the following differential 
equations: 

0P~ --  eA 1 (9 ~) + e"A2 (p2) @ . . . .  (12)  
Ot' 

0~  _ c' (p~) -l- eB~ (9 ~) -}- e~Be (p ~') -}- . . .  ( 1 3 )  
or" 

S u b s t i t u t i n g  (10)  i n t o  ( 3 ) ,  t a k i n g  i n t o  a c c o u n t  Eqs .  (12)  and  ( 1 3 ) ,  we e q u a t e  t h e  c o e f f i c i e n t s  
o f  i d e n t i c a l  p o w e r s  o f  a and  o b t a i n  e q u a t i o n s  f o r  t h e  f u n c t i o n s  wx, w2, e t c .  I n  p a r t i c u l a r ,  
t h e  e q u a t i o n  f o r  w ~ ( z ,  t ' )  i s  

Owl p [ Owa + 9 ~ Oawl 
Or' ] / . l_~W ( c ' - -  1.7) Oz 12 Oz 3 

0 ] 
+ p" -g - z  (~wl) = f [~l, 

(14) 

where 

(E(s) 
3 q~ -kA~ q)@ 

z &p '~ p 3 0r 
B1 

2 Oz ), V 12or' Oz (15) 

The unknown functions A~(92) and BI(O 2) introduced by us are determined by the condition of 
absence in the function wx(z, t') of secular terms increasing with time. As shown in [13-16], 
this condition reduces to the orthogonality requirement of the functions ~ and O~/0z in the 
right-hand side of Eq. (14), i.e., to the satisfaction of the condition 

2K(s) 2K(s) Oep dz = O. 
~ [~l,Pdz = j" i t~l o~ 

0 0 

(16) 

From these equalities we find the required functions: 

A.t (P~) = 89" - -  79 ~, BI (p2) 89" - -  ?P~ q, (17) 
pn 

where 

2K(s) 
1,3 I qD2dz 

8= 
2K(s) 1 !" zq) dz 

q)2dz + 2 , Oz 
0 0 
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, ~p~dz 
~ K (s) 3 , ! 

: 2/<(s) I 2K(~) 0q)  dz  ; 

+ T ,I oz 
0 0 (18) 

q = 

S j 
0 

o \ - ~ z /  dz 

The Ax and Bz values found are then substituted into Eqs. (12) and (13), and, restricting 
ourselves to first-order terms, we obtain 

3. The solution of Eq. (19) 

Ot' 

o~ = c' (o 3) + ~ ~ - -  re" 
3t' p 

is the function 

--q. 

(19) 

(20) 

-o ~ ~ exp (e~t') (21)  
? 

§  ') -- 11 
? 

The given relationship makes it possible to investigate the dynamics of amplitude variation 
of the waves generated. It is seen from Eq. (21) that if the initial value of the wave ampli- 
tude ao = 0~s a vanishes, then its value a = pas2 remains zero at any moment of time, and 
there are no waves on the film surface, i.e., the liquid flows laminarly over the vertical wall. 
This flow is, however, unstable. Since small random runoffs are practically unavoidable in 
fluid flow, waves with monotonically increasing amplitudes are automatically excited on the 
film surface. The amplitude growth is due to the fact that in the right-hand side of Eq. 
(I) the term 3vo(3h/3x), referring to a positive energy sink, is larger in absolute value 
than the term 3h/3t, corresponding to a negative sink. With increasing amplitude due to an 
increase in the phase velocity of the wave (see Eq,(7)) the quantity 3h/3t increases, and for 
amplitudes equal to 

2 ~ [~ s * . =  l '3s*  
a s t = P s t S :  ? E(s)  2 - - #  ' (22)  

K (s) 3 

the right-hand side of Eq. (i) vanishes. With further amplitude increase the right-hand side 
of Eq. (i) starts corresponding to a negative energy sink, increasing the wave amplitude toward 
the stationary value (22). 

For periodic waves realized experimentally s 2 << i, i.e., the waves are almost sinusoidal. 
Therefore, expression (22) for a stationary amplitude can be expanded in a series in s: 

ast = 3,9s 2 I + ~  + . . . .  ( 23 )  

According to Eqs. (6), (7), and (20)-(22), the phase velocity and wavelength are: 

(e(s) 
% =  1 , 7 + ~  ~K(s ) 3 " Vo = 3Vo : 2,1 gQ2v ' (24 )  
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Fig. i. A flowing-down film. 
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Fig. 2. Stationary values of wave phase velocity (a) and 
of the wavelength (b) as functions of the liquid flow rate 
Q for ethyl alcohol; the points are experiment [i], the 
solid lines are calculated from Eqs. (24) (a) and (25) (b), 
and the dashed lines are calculated by [6]. c, m/sec; 
%st, m; Q, m2/sec. 

3[ ~----6--( 1 ,~ ) 
2 V 120' K(s)ho = 9.6 V I -~- (25) 

) ~ t  - -  Pst dgO -~-s + : . . .  

Figure 2 shows a comparison of the given theoretical dependences of Cst and Xst on the liquid 
flow rate Q with the experimental dependences [i]. It is seen that the phase velocity of 
the wave obtained from expression (24)is in good agreement with experiment only at low rates 
Q; with increasing Q theory provides a faster growth of the phase velocity. The theoretical 
value of the stationary wavelength %st is in satisfactory agreement with experiment in almost 
the whole variation interval of Q. 

In conclusion we note that in determining the parameters p and q we restricted ourselves 
to first order terms in Eqs. (12) and (13). Therefore, in expansion (i0) for the function 
w(x', t') it makes no sense to retain terms of first and higher orders, since the errors of 
Eq. (I0) and of the simplified equation 

~', t') = --p~ (z) (26)  

a r e  f i r s t - o r d e r  q u a n t i t i e s  ( f o r  a p r o o f  s e e  [ 1 0 ] ) .  C o n s e q u e n t l y ,  w i t h i n  t h e  f i r s t  a p p r o x i m a -  
t i o n  in the parameter ~ the wave profile is described by Eq. (26), and it is meaningless to 
solve Eq. (14). 

NOTATION 

a, difference between the maximum and minimum wo(x', t') values; Ai and Bi, quantities 
introduced in Eqs. (12) and (13); c and c', dimensional and dimensionless phase velocities 
of the wave; d, liquid density; f[~] , function introduced in Eq. (15); g, free-fall accelera- 
tion; h(x, t), film thickness; ho and vo, film thickness and flow velocity in the laminar 
regime; K(s) and E(s), complete elliptic integrals of kinds I and II; Q is the liquid flow 
rate; Re, Reynolds number; s, Jacobi modulus function; t, t', x, and x', dimensional and 
dimensionless time and longitudinal coordinate; w(x', t'), relative variation in the film 
thickness, determined for (2); wi(z, t'), functions introduced in Eq. (i0); z, wave phase 
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from Eq. (5); B, Y, q, quantities determined in Eq. (18); e, smallness parameter introduced 
in Eq. (2); ~(t'), function introduced in Eqs. (5), (13); %, I', dimensional and dimension- 
less wavlength; v, kinematic viscosity; p, quantity introduced in Eqs. (4), (5); Po, its 
initial value; o, o', dimensional and dimensionless surface tension coefficient; ~(z), 
function introduced in Eqs. (4), (5); ast, Cst, Yst, Pst, values of the parameters a, c, 
%, 0 in the stationary regime. 
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